

Raw Reads to Results: Building Next-**Generation Bioinformatics Pipelines**

Haider Hassan¹, Jessica Corrado¹, Alissa Cait, Erica Scott, Erik Tillman², Dan Ryder^{1,3} ¹Bridge Informatics, Inc., 160 Alewife Brook Pkwy, Cambridge, MA 02138; ²Akero Therapeutics, 601 Gateway Blvd, Suite 350 South San Francisco, CA 94080; ³Corresponding author and Chief Executive Officer of Bridge Informatics, Inc.

Variant Detection in Whole-Genome	Variant Detection:	Pipeline Improvements Over
and Whole-Exome Sequencing	Computational Workflow	Manual Process
 What is variant detection in WGS and WES? Whole-genome sequencing (WGS) analyses an individual's entire genome, while whole-exome sequencing (WES) focuses only on protein-coding regions (exons). Variant detection in these approaches identifies 	Present sequence quity Output of the sequence quity of t	 Optimized & Parallel Processing: Pipelines automate multi-step sequencing analysis (e.g., quality control, alignment, variant calling) and execute tasks in parallel, reducing total computation time. Minimal User Intervention: Automated

genetic differences (SNPs, insertions/deletions, structural variants) that may contribute to disease, traits, or biological functions.

	, j
(Trimmomo	tic Cutadant)
	iic, Cutuupt)
•	-

Read quality assessment.

STEP 2: ALIGNMENT

- **Tools:** BWA, STAR, HISAT2.
- Processes:
 - Mapping reads to reference genomes (e.g., GRCh38).
 - Sorting and deduplication of BAM files (samtools, Picard).

VARIANT CALLING & ANNOTATION **Tools:** GATK, GLIMPSE2, bcftools,

Processes:

STEP 4:

- Variant detection (GATK HaplotypeCaller) for highcoverage whole exome data.
- Genome sequencing imputation and variant detection (GLIMPSE2) for low-coverage whole genome data.
- Filtering and annotation using the database dbSNP.

Workflow Managers: Nextflow,

parameters and resource

Configuration files for pipeline

Secure storage and transfer of

outputs (AWS S3, Google Cloud

- workflows handle **data processing**, software dependencies, and error handling, significantly cutting down manual effort.
- Scalable & Efficient: Cloud-based execution dynamically distributes workloads across multiple processors, ensuring **faster analysis** with minimal hands-on time for researchers.

Figure 4. Automated Genomic Analysis: Bioinformatics pipelines reduce computing time by running tasks in parallel and minimizing manual intervention. Cloud-based scalability and containerization further enhance efficiency, allowing researchers to process sequencing data with minimal hands-on time.

Usina

Industry-recognized for being powerful tools, WGS and WES are often used to answer broad biological questions (Figure 2). However, WGS and WES generate vast amounts of genomic data, posing technical challenges in data handling, processing, and analysis. A well-designed bioinformatics pipeline can address these issues.

8 9 15-19 30-34 45-49 60-64 75-79 90-94 105-109 120-124 135-139 15

Variant calling from WES and WGS data or different individuals (or can be applied to different cells)

STEP 5:

SCALABILITY & VALIDATION

WORKFLOW INTEGRATION

Snakemake.

allocation.

Storage).

• Processes:

Cloud Integration: Dynamically scalable computing resources for large datasets.

Validation: High concordance with benchmark datasets (GIAB).

Results: Understanding genetic variation using WGS and WES

Our analysis reveals genetic differentiation patterns. The clustering suggests distinct genetic subgroups, which may reflect ancestry, demographic history, or disease-associated genetic differences.

	analysis	pipeline
Advanced bioinformatics skills	Required	Not required
Version control	none	Highest possible
Reproducibility	Not guaranteed	To the highest standard

Pipeline Summary

Reproducibility: Containerization ensured consistency across environments.

Efficiency: Automated processes reduced time to results by 40%.

Scalability: Cloud resources optimized for largescale datasets.

detection in WES and WGS can be applied to a wide range of biological and clinical research questions.

Bioinformatics Pipeline for Variant Detection

- Modular & Scalable Design: Integrates containerization (Docker, Singularity) with workflow managers (Nextflow, Snakemake) for efficient high-throughput sequencing analysis.
- User-Friendly & Fast: Enables nonbioinformaticians to process sequencing data to a finalized VCF file in under 10 minutes of user time.
- **Optimized for Performance:** Incorporates automated QC, alignment, variant calling (GATK, GLIMPSE2), and cloud-based GPU acceleration for rapid, large-scale analysis.

Figure 3. Principal Component Analysis (PCA) of Genetic Variation from Whole-Genome Sequencing (WGS) and Whole-Exome Sequencing (WES). The PCA plot clusters individuals based on genetic similarity, highlighting population structure. Each point represents an individual, with colors distinguishing unique individuals and ellipses representing major population clusters.

Accuracy: Concordance analysis confirmed robust and reliable variant calls.

Let's connect!

linkedin.com/company/bridge-informatics

dan.ryder@bridgeinformatics.com \checkmark

Acknowledgments

We want to thank Akero Therapeutics for collaborating with us on this project and poster. In particular, we want to thank Erik Tillman, Akero's Director of Translational Biology and Pharmacology, for his collaboration.

Copyright © Property of Bridge Informatics